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In this paper we present a laboratory experiment in which 157 secondary-school
students learned the concept of function with either static representations or dynamic
visualizations. We used two different versions of dynamic visualization in order to
evaluate whether interactivity had an impact on learning outcome. In the group learning
with a linear dynamic visualization, the students could only start an animation and run it
from the beginning to the end. In the group using an interactive dynamic visualization,
the students controlled the flow of the dynamic visualization with their mouse. This
resulted in students learning significantly better with dynamic visualizations than with
static representations. However, there was no significant difference in learning with
linear or interactive dynamic visualizations. Nor did we observe an aptitude–treatment
interaction between visual-spatial ability and learning with either dynamic visualizations
or static representations.

Keywords: concept of function, covariation, dyna-linking, animation, dynamic visualization, static representation,
visual-spatial ability

INTRODUCTION

Students in the fields of science, technology, engineering, and mathematics (STEM) often have to
acquire knowledge about a process, i.e., a situation that changes over time. In biology, the dynamic
process of cell division is key content; in geography, the eruption of a volcano is a process of change
over time; in engineering, comprehending how a machine works involves understanding a dynamic
situation; and in mathematics, functional relationships (e.g., the path–time relationship of a moving
car) often have to be interpreted dynamically—for example, how much does the dependent variable
y (e.g., path) change if the independent variable x (e.g., time) changes by 1x, or at which value of x
is the strongest increase of y?

Concept of Function
This kind of dynamic thinking is subsumed in mathematics education under thinking of function
as covariation in contrast to thinking of function as correspondence (Vollrath, 1989; Confrey and
Smith, 1994; Thompson, 1994). The aspect of correspondence focuses on the pairwise assignment
of values of the domain to values of the range. Calculating the function value of a given function
(e.g., f (x) = 2x2

+ 3x+ 1) for a particular value (e.g., x = 5) or finding the zeros of the function f are
typically function tasks that address the correspondence conception of function. Traditionally, this
static view of a function as pointwise relations plays an important role in teaching the concept of
function in school (Hoffkamp, 2011; Thompson and Carlson, 2017). The covariation conception,
however, focuses on the interdependent covariation of two quantities, that is, the effect of a change
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of the value of the domain on the value of the range or vice
versa. This thinking of function as covariation is considered
“fundamental to students’ mathematical development”
(Thompson and Carlson, 2017, p. 423). Furthermore, the
aspect of covariation is a central aspect of calculus and can,
therefore, be considered calculus-propaedeutic. Covariational
thinking can be further split into quantitative and qualitative
covariation (Rolfes et al., 2018). In a quantitative covariational
analysis, a function is examined in numbers (e.g., calculation
of a rate of change). In contrast, in a qualitative covariational
analysis, the functional relationship is explored by the visual
shape of the graph and without the precise function values
(Rolfes et al., 2018). Quantitative covariational thinking requires
different skills than qualitative covariational thinking, and they
form psychometrically two correlated but separate dimensions
(Rolfes, 2018).

In mathematics education, one notes that mathematical
objects (e.g., functions) are not directly accessible apart from
external representations (Duval, 2006). Therefore, a difference
exists between the abstract mathematical object and its
representations. Hence, a form of representation is needed to deal
with a function. The tabular, graphical, algebraic, and situational
representation are four typical forms of representation of a
function (Janvier, 1978). The unanimous opinion in mathematics
education states that the ability to translate between different
forms of representations is one aspect of a deep understanding
of the concept of function (e.g., Janvier, 1978; Duval, 2006).

Learning Dynamic Processes With
Dynamic Visualizations
One main challenge for teachers and students of all STEM
subjects is as follows: how is a dynamic process best learned,
and how can we enable students to construct mental models
(Johnson-Laird, 1980) that adequately represent the dynamic of
the content? The traditional approach uses one or several static
pictures to illustrate the process. In textbooks, the cell division
process is displayed with static pictures marking crucial steps in
the process. Likewise, the process of an eruption of a volcano
or the working of a machine is often illustrated with one or
more pictures. On the basis of these static pictures, students
are required to generate a dynamic mental representation of the
processes of cell division, an eruption of a volcano, or the working
of a machine. In mathematics, the presentation and learning
of dynamic content is even more complicated than in other
STEM subjects. If the functional relationship under consideration
models a real-life situation (e.g., a path–time relationship), the
underlying dynamic situation (e.g., the movement of a car)
is often not illustrated at all. Instead, an abstract graph is
displayed as a static representation of the functional relationship.
Students are required to draw a connection between the real-life
situation and the underlying functional relationship on the basis
of this static graph. Afterward, they have to “animate” the graph
mentally to solve a covariation task (e.g., does the speed of the car
increase or decrease?). With the advent of modern technology, a
new approach to learning dynamic content has become possible:
dynamic visualizations (e.g., animations) of processes (e.g., cell

division, eruption of a volcano) that can display the dynamic
content dynamically. This approach corresponds with the notion
held by many that static representations are the best method
for learning about static content, and dynamic visualizations
the most appropriate for dynamic content (Ploetzner and Lowe,
2004; Schnotz and Lowe, 2008). Based on this congruency
hypothesis between external and mental representations, for
example, Karadag and McDougall (2011) argued that e.g., “the
term ‘increasing’ points out a dynamic process, which is quite
difficult to understand in a static media” (p. 175).

Dynamic visualizations can be defined as representations
that change their graphical structure during the presentation
(Schnotz et al., 1999; Ploetzner and Lowe, 2004). Kaput (1992)
considered as characteristic for dynamic visualizations that
time has an “information-carrying dimension” (p. 525). In
dynamic visualizations, the states of objects can change as a
function of time (Kaput, 1992). Dynamic visualizations can be
further subdivided into linear dynamic and interactive dynamic
visualizations. In the case of linear dynamic visualizations (e.g.,
non-interactive animations), the change takes place automatically
and cannot be influenced. Interactive dynamic visualizations,
on the other hand, give learners “some control over how these
changes are presented to them” (Ploetzner and Lowe, 2004,
p. 235). Schwan and Riempp (2004) pointed out that interactive
dynamic visualizations “enable the user to adapt the presentation
to her or his individual cognitive needs” (p. 296). However,
interactivity could also have negative effects on cognition if
managing interactive features burdens the learner with additional
cognitive load (Schwan and Riempp, 2004).

For scientific content, empirical findings concerning
learning with dynamic visualizations could seldom corroborate
assumed advantages for this mode of learning. Often, dynamic
visualizations showed no higher learning effect than static
representations. In an experiment conducted by Hegarty et al.
(2003), understanding of how flushing cisterns work increased
when both static representations and dynamic visualizations were
used; however, there was no evidence that dynamic visualizations
led to a higher learning effect than did static representations.
Mayer et al. (2005) found no advantages in instructions
containing dynamic visualizations regarding learning about
various types of scientific content (braking systems, ocean waves,
toilet tanks, lightning). Instead, for some content, learning with
paper-based static representations proved significantly more
effective than learning with dynamic visualizations.

Dyna-Linking as a Form of Dynamic
Visualization in Mathematics
In mathematics, a graph is a pivotal form of representation when
dealing with the concept of function. The ability to connect
the situational with the graphical representation is considered
essential to understanding graphs (Janvier, 1978; Hoffkamp,
2011). One approach to foster this ability is providing a real-
time link between a motion and a graphical representation (e.g.,
Brasell, 1987; Thornton and Sokoloff, 1990; Nemirovsky et al.,
1998; Radford, 2009; Urban-Woldron, 2014). This real-time link
can be produced by motion detectors that record motions of
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persons or objects with a sensor. These data are then displayed
in real-time as a kinematic Cartesian graph on a screen, and
students have to explore and interpret these kinematics graphs.
Brasell (1987) found out in an experiment that the immediate
display of the graph on a screen is crucial since a lag of
only 30 s already impaired learning. Nemirovsky et al. (1998)
concluded, based on their case study with a motion detector,
that graphing motions “allows students to encounter ideas such
as distance, speed, time, and acceleration” (p. 169). The learning
environments using a motion detector have in common that they
try to foster a rather conceptual and qualitative than a procedural
and quantitative understanding of functional relationships.

A related approach to highlight the connection between
two forms of representation is through dynamic linking of
representations in a dynamic visualization; this is referred to as
hot linkages (Kaput, 1992) or dyna-linking (Ainsworth, 1999). In
dyna-linking, two representations are linked so that the effect of
an action in one is automatically displayed in the linked second
(Kaput, 1992; Ainsworth, 1999). Figure 1 shows an example of
dyna-linking a representation of an equilateral triangle with a
graph. The graph displays the relationship between the length of
the path on the perimeter of triangle ABC from P to Q and the
length of the corresponding chord PQ. Starting in vertex A, point
Q moves counterclockwise along the triangle line until it reaches
vertex A again. The effect of this alteration is simultaneously
displayed in the triangle and the graph.

In educational research, various reasons for the advantageous
nature of dyna-linking were put forward. One says a system that
automatically translates between forms of representation should
reduce learners’ cognitive load, thereby freeing up cognitive
capacity to learn the relationship between representations
(Kaput, 1992; Scaife and Rogers, 1996; Ainsworth, 1999;
Karadag and McDougall, 2011). Some researchers also
considered the idea of supplantation (Salomon, 1979/1994)
as the underlying beneficial principle of dyna-linking (Vogel
et al., 2007; Hoffkamp, 2011). Salomon postulated that mental

FIGURE 1 | Screenshot (translated into English) of dyna-linking two
representations (equilateral triangle and corresponding graph). The effect of a
movement of point Q is displayed simultaneously in the triangle ABC and the
coordinate system.

operations could supplant mental operations if learners
are unable to perform the operations by themselves. Vogel
et al. (2007) pointed out that supplantation can support
the learner’s mental operations in connecting a graph
with the underlying situation concerning both aspects of a
function (correspondence and covariation). Furthermore, the
framework of instrumental genesis (Rabardel, 2002) can be
considered as a theoretical underpinning of the effectiveness
of dyna-linking. When a dynamic visualization in the form
of dyna-linked representations as an artifact is put into an
interactive relationship with a specific task and students’
mental schemes, it transforms into an instrument that can
enhance learning.

Some empirical studies evaluated the effect of dynamic
visualizations in terms of dyna-linking situational and graphical
representations on learning covariational aspects of the concept
of function. Hoffkamp (2011) performed a qualitative study
with 25 10th grade students. A geometrical situation (area
within a triangle) was dynamically linked to the corresponding
graph (relationship between area and a length) in a learning
environment. Hoffkamp concluded that dyna-linked interactive
visualizations “not just lead to the manipulation of some points
or lines, but really activate the formation of an intuitive access
of calculus” (p. 370). She observed that especially asking for
verbalizations prompted conceptualization processes and led to
students integrating a dynamic view into their conception of
function (Hoffkamp, 2011).

In an experimental study with 133 middle-school students,
Vogel et al. (2007) evaluated the effect of supplantation on
the ability to interpret graphs. The students were divided
into three experimental groups. The full supplantation group
had to interpret graphs concerning variables of a geometric
object (e.g., relationship between radius and surface area of
a cylinder when the volume is fixed). They received support
via an interactive dynamic visualization that dyna-linked the
graph with a representation of the geometric object. In the
reduced supplantation group, the graph was linked with a
representation of the geometric object for one particular value,
but no dyna-linking was available. In the no-supplantation
group, the students only had the graph available and no
representation of the geometric object at all. The experiment
showed that linking the graph with a representation of
the geometric object had a significantly positive effect on
learning to interpret graphs. There was, however, no significant
difference between the two forms of linking (full vs. reduced
supplantation), that is, dyna-linking was not more beneficial
than linking the graphical and situational representations in
a static manner.

In two experiments with 111 eleventh graders and 24 tenth
graders, Ploetzner et al. (2009) investigated which kind of
visualizations most helped students to relate motion phenomena
to line graphs. The students in the control group only received
dyna-linked representations of a moving runner and the
corresponding piecewise line graph. In the experimental group,
the students also received vectors representing the distance
covered by the runner at different points in time. The result
showed that adding vectors which dynamically represent the
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covered distance compared to “only” dyna-linking the motion of
the runner with the piecewise line graph had no additional effect.

What Are Favorable Conditions for
Learning With Dynamic Visualizations?
Lowe and Ploetzner (2017) conclude that dynamic visualizations
have “not proven to be the educational magic bullet that
many assumed it would” (p. xv). The explanation for the
rather disappointing empirical results concerning learning with
dynamic visualizations remains up for discussion. van Gog
et al. (2009) suggest that dynamic visualizations place a higher
load on working memory; that is, learners need to process the
information that is visible at the time as well as remember
previous information, and relate and integrate that information
to understand the dynamic visualization. These requirements,
combined with a constant stream of information, increase the
load on working memory. As a result, information shown
at the beginning of a dynamic visualization might be lost
from memory before it can be linked to information shown
later. These problems of transitivity do not exist with static
representations because they can be studied repeatedly (van
Gog et al., 2009; Höffler and Leutner, 2011). Additionally, from
a constructivist perspective, dynamic visualizations, like dyna-
linking, can be considered problematic because learners may
remain too passive or even be discouraged from worrying
about translations of representations (Ainsworth, 1999). This
could result in the desired ability to perform translations
between representations not being developed by dyna-linking
(Ainsworth, 1999). Mayer et al. (2005) have speculated that
the mental simulation of a dynamic process based on a
static representation could achieve a higher learning effect
than that achieved by merely receptively contemplating a
dynamic visualization.

The lack of solid empirical evidence for a learning effect
of dynamic visualizations, combined with various theoretical
rationales concerning the disadvantages, raises the question
of whether there are any circumstances in which dynamic
visualizations are conducive to learning. Pea (1985) gave some
fundamental thoughts on the role of computers and dynamic
visualizations. He argued that the computer could be viewed
as cognitive technology that not only amplified but reorganized
cognition and “helps transcend the limitations of the mind”
(p. 168). Therefore, in mathematics, the use of computers
and dynamic visualizations shifts the activities more to a
meta-level (e.g., interpreting graphs instead of constructing
graphs from a table) instead of doing the same as before
but “faster, more often and more accurately” (Dörfler, 1993,
p. 168). As a consequence, new kinds of tasks are necessary
to initiate cognitive activities on the meta-level (Dörfler,
1993).

Some researchers tried to identify the functional role of
dynamic visualizations in learning a given content. Schnotz
and Rasch (2008) proposed that dynamic visualizations could
promote learning if cognitive resources are freed up: if a mental
process becomes feasible for a learner only through dynamic
visualization, it fulfills an enabling function. If a process can also

be carried out with the aid of a static representation, but the
dynamic visualization considerably reduces an otherwise very
high cognitive load, the dynamic visualization has a facilitating
function (Schnotz and Rasch, 2008). Consequently, dynamic
visualizations should be most effective in challenging tasks.
Tversky et al. (2002) suggested a congruence principle between
external and internal representations: dynamic visualizations
are only more beneficial than static representations when the
dynamically presented content is congruent with the internal
representations that the learner must construct.

Furthermore, some general conditions appear to influence
learning with dynamic visualizations positively. First, interaction
options while learning with dynamic visualizations appear to
enhance learning. Experiments have shown that even relatively
small interactive elements, such as pausing and replaying
a dynamic visualization, can increase learning success (e.g.,
Mayer and Chandler, 2001; Hasler et al., 2007). This positive
effect could be caused by the reduction of cognitive burden
on working memory (Spanjers et al., 2010). In general,
interactively manipulating dynamic visualizations could enhance
learning because they hinder the acceptance of a dynamic
visualization in a passive way (De Koning and Tabbers, 2011).
Nevertheless, even interaction options are Janus-faced: they can
also produce negative effects, such as random clicks or the
omission of interaction options (De Koning and Tabbers, 2011).
Interactive information places additional demands on learners
and potentially limits the cognitive resources available, thus
detrimentally affecting the learning process. One could reduce
the processing demands of interactivity by constraining the
experiment space in an interactive dynamic visualization (Klahr
and Dunbar, 1988; van Joolingen and de Jong, 1997), that is,
reducing the interaction possibilities.

Second, cognitive activation appears essential when learning
with dynamic visualizations. Hegarty et al. (2003) found that
understanding increased when learners had to predict the
dynamic behavior of a machine from static representations.
De Koning and Tabbers (2011) concluded that interactive
manipulations combined with understanding processes
might increase the learning effect of dynamic visualizations.
Additionally, De Koning et al. (2009) advocated highlighting
certain parts of a dynamic visualization in order to draw learners’
attention to these areas.

The Role of Visual-Spatial Ability in
Learning With Dynamic Visualizations
In addition to general factors like interaction and cognitive
activation that appear to enhance the learning effect, moderating
factors might influence the impact of dynamic visualizations on
learning. Dealing with dynamic visualizations requires visual-
spatial ability. Therefore, visual-spatial ability could have a
moderating effect on learning with dynamic visualizations,
thereby generating an aptitude–treatment interaction (Snow,
1989). In the literature, there are two competing theses about
the aptitude–treatment interaction between visual-spatial ability
and learning with dynamic visualizations. On the one hand,
the ability-as-compensator hypothesis assumes that dynamic
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visualizations are particularly advantageous for learners with
low visual-spatial ability (Mayer and Sims, 1994; Mayer, 2001).
People with low visual-spatial ability are less able to animate
their own mental representations and use dynamic visualizations
to compensate for their lack of skill (Hegarty and Kriz,
2008; Höffler and Leutner, 2011; Sanchez and Wiley, 2014).
Therefore, the availability of external dynamic visualizations
could help learners with limited spatial imagination to construct
satisfactory mental models (Hegarty and Kriz, 2008; Höffler
and Leutner, 2011), the dynamic visualization serving as a
"cognitive prosthesis" (Hegarty and Kriz, 2008, p. 7). Further,
a theoretical foundation for the compensation thesis can be
deduced from the theory of supplantation (Salomon, 1979/1994).
For our research, the theory of supplantation would imply that
external dynamic visualizations could supplant mental processes
related to dealing with functional relationships requiring visual-
spatial imagination.

The ability-as-enhancer thesis, on the other hand, assumes
that learners with good spatial imagination benefit more from
dynamic visualizations than do learners with poor spatial
imagination (Mayer and Sims, 1994; Huk, 2006; Höffler and
Leutner, 2011). In this case, visual-spatial ability serves to amplify
the learning process. An amplifying effect could result because
dynamic visualizations may place a higher demand on spatial
imagination due to their transitivity than static representations
(Höffler and Leutner, 2011). Thus, only students with high visual-
spatial ability would be able to process the information presented
in rapid succession in a dynamic visualization (Hegarty and Kriz,
2008), because visual-spatial imagination is associated with larger
spatial working memory (Miyake et al., 2001). This relationship
would make dynamic visualizations detrimental to learners with
poor visual-spatial ability.

Empirical results on the aptitude–treatment interaction
between visual-spatial perception and learning with dynamic
visualizations are inconsistent. In an experiment with 162
students, Sanchez and Wiley (2014) found no aptitude–treatment
interaction between the performance in a paper folding task and
the learning with dynamic visualizations. In three experimental
groups, the students had to read a text about the eruption
process of a volcano. The text was accompanied either by static
pictures or by a linear dynamic visualization or there were no
pictures at all. Nevertheless, in the same study but using another
measure of visual-spatial ability—a test for predicting the motion
of various objects—dynamic visualizations were found to have
a compensating effect (Sanchez and Wiley, 2014). Narayanan
and Hegarty (2002) and Hegarty et al. (2003) failed to find
an aptitude–treatment interaction in an experiment using static
illustrations and non-interactive animations with 100 students
learning how a flushing cistern works. Höffler and Leutner
(2011), on the other hand, identified a compensating effect of
dynamic visualizations in an experiment examining chemical
content (role of surfactants during the washing process) involving
25 students. The text was illustrated either with a system-paced
animation or four static pictures representing the key moments
of the process. In a second experiment with 43 students, these
same authors (Höffler and Leutner, 2011) were able to replicate
an aptitude–treatment interaction.

Present Study
The theoretical findings raise the question to what extent
dynamic visualizations influence learning of a core mathematical
idea like the concept of function. Therefore, the present study
investigated the following three hypotheses:

Hypothesis 1 (H1): Dynamic visualizations of geometrical
situations dyna-linked with the corresponding graph are
more beneficial than only providing static representations
of a geometrical situation and the corresponding graph for
learning about the aspect of covariation of a function.

Learning with dynamic visualizations is not more beneficial
per se than learning with static representations. Dealing with
functional relationships that focus on the aspect of covariation
does, however, require the execution of dynamic mental
processes. A higher learning effect of dynamic visualizations
compared with static representations is to be expected if dynamic
visualizations considerably facilitate the learning process, or even
just enable it (Schnotz and Rasch, 2008).

Hypothesis 2 (H2): Using interactive dynamic
visualizations of geometrical situations dyna-linked
with the corresponding graphs are more beneficial than
using linear dynamic visualizations for learning about the
aspect of covariation of a function.

Interactive dynamic visualizations allow or even require
learners to influence the flow of a dynamic visualization.
Therefore, learners can control the flow of information and
prevent the information overload of working memory. In
addition, systematic variations can be deliberately explored.
However, the number of variations in the interactive dynamic
visualization should be kept low to facilitate a focused
learning process.

Hypothesis 3 (H3): There is an aptitude–treatment
interaction between visual-spatial ability and learning
about the aspect of covariation of a function with
linear or interactive dynamic visualizations of geometrical
situations dyna-linked with graphs.

The ability-as-compensator and the ability-as-enabler
hypotheses offer two rationales postulating an aptitude–
treatment interaction between visual-spatial ability and
representational form, albeit in different directions.

MATERIALS AND METHODS

Overview and Experimental Design
An experiment consisting of three lessons of 45 min each was
performed to check the validity of the hypothesis (cf. Overview
in Figure 2). In the first lesson, six control variables were
collected (cf. subsection instruments). The intervention with a
computer-based learning environment took place in the second
lesson (cf. subsection learning environment). The students were
randomly assigned to one of three experimental groups and
individually learned for 25 min using a static representation,
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FIGURE 2 | Overview of the experimental design.

a linear dynamic visualization, or an interactive dynamic
visualization. The core content of the learning environment
was the learning of qualitative covariational thinking. The
computer-based posttest was administered during the second
lesson, immediately following the intervention. Finally, four
more control variables were collected in the third lesson. The
whole experiment took place in three mathematics lessons within
one school week.

Participants
One hundred and fifty-seven students (88 eighth-graders;
69 ninth-graders) of an academic track secondary school
(Gymnasium) in the German state of Rhineland-Palatinate
participated in the study. Nearly all students of the seven
Grade 8 and 9 classes voluntarily participated in the experiment.
Each gender was almost equally represented (55% female; 42%
male; 3% N/A). The mean age was 14.2 years (SD = 0.66).
The state’s curriculum requires functional relationships to be
covered in grades 8 and 9 (Ministerium für Bildung et al.,
2007). The focus of the curriculum, however, is on linear
and quadratic functions, the procedural-technical handling of
algebraic expressions, and the display in graphs. A qualitative
analysis of general functional relationships, in particular with
regard to the aspect of covariation, is not a regular part of
mathematics lessons in these grades. Therefore, the content of
the intervention and the posttest (see below) can be considered
relatively unknown to the students.

Learning Environment
The computer-based learning environment consisted of 19 tasks.
The aim of the learning environment was to foster students’
ability in qualitative covariational thinking. The stimulus in
the first task (Figure 3) was an equilateral triangle, in which
a chord was drawn from point P to a point Q. The chord’s

endpoint Q was variable, while the starting point P was fixed
at vertex A. Thus, this geometric configuration constituted
a functional relationship between the length of the path on
the perimeter of triangle ABC from point A to point Q and
the length s of the chord PQ. We selected this problem as
the initial content of our learning environment because it
provided different demanding covariational tasks (cf. Roth,
2005) and was almost certainly unknown to the students. This
geometrical configuration required students to evaluate what
effect a variation of the geometrical configuration, that is, moving
the endpoint of a chord, has with regard to covariational
aspects. Intentionally, quantitative covariational thinking was not
addressed. Instead, the focus was to prompt a more conceptional
understanding of covariation.

In Task 1, the students had to work out at which point
the chord was at its longest based on the representation of
the equilateral triangle. The students had to substantiate their
answer to stimulate cognitive activation and to avoid guessing
behavior. In Task 2, the students had to argue at which point
the chord was at its shortest. The same representation of an
equilateral triangle was also used in the following tasks 3 to 6, in
which students were asked further questions about the functional
relationship between the length of the path and the length of
the chord—for example, in which part does the length of the
chord increase, and in which part does it decrease? The intention
of the first six tasks was to engage students in covariational
thinking in a geometrical situation. The graph was purposely not
introduced before this point. Rather, the students should first
acquire a profound understanding of the situational context and
its covariational aspects.

Students learned the connection between the situational and
graphical representation in the following six tasks according
to a predict-observe-explain scheme that has shown beneficial
in previous research (Urban-Woldron, 2014). In tasks 7 to 9,
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FIGURE 3 | First task of the three experimental conditions in the learning environment (translated into English).

Frontiers in Psychology | www.frontiersin.org 7 April 2020 | Volume 11 | Article 693

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00693 April 29, 2020 Time: 20:35 # 8

Rolfes et al. Learning the Concept of Function with Dynamic Visualizations

students had to predict the form of the graph for different sections
(point Q moving from A to B, from B to C, and from C to A).
Corresponding lengths were colored with the same color (Kozma,
2003) to support the students’ ability to translate between the
situational and graphical representation. Tasks 10 to 13 displayed
the connection between the representation of the triangle and the
complete graph of the functional relationship (c.f., Figure 1) so
that students could check the correctness of their predictions and
explain why the graph has this particular form. In the last six tasks
(tasks 14 to 19), students had to answer similar questions for a
rectangle instead of a triangle. None of the students’ answers were
assessed or explicitly corrected.

The tasks of three experimental groups were accompanied
by three different forms of representation in the learning
environment (Figure 3): when learning with the linear dynamic
visualization, students could only watch an animation and
observe the movement of a point Q on the triangle line
ABC and its effect on the length of chord PQ; the students
learning with the interactive dynamic visualization could use
their mouse to drag the point Q along the triangle line and
study the effect of their manual manipulation; students in the
third experimental group had to solve the same tasks using static
representations and to simulate mentally the point’s movement
without external support.

The mathematical content of the 19 tasks in the learning
environment was identical for the three experimental groups,
but the instructional text differed where necessary. For example,
students using a linear dynamic visualization were instructed to
“animate point Q on the perimeter of the triangle by clicking
on the play button.” Those working with an interactive dynamic
visualization were asked to “drag point Q with the mouse
along the perimeter of the triangle,” while those using a static
representation were prompted to “move point Q in your mind
along the perimeter of the triangle.”

During the intervention, every student worked with the digital
learning environment without external support of instructors.
Collaboration between students was not allowed and did not
take place. The students were unaware of the experimental
variation and which group they belonged to until the very end
of the experiment.

The original German learning environment is reported in
Supplementary Material 1.

Instruments
A number of variables were collected on participants’ attitudes
and abilities. The main reason for including these variables
was to check whether the randomized assignment into
experimental groups led to groups with approximately equivalent
preconditions. Furthermore, these variables allow controlling
their effect on the outcome (cp. Maxwell et al., 2018). Therefore,
we tried to identify covariates that could be assumed to correlate
with the posttest (see explanation below) as the outcome variable
from a theoretical or empirical perspective. We selected the
three scales for measuring mathematics self-efficacy, mathematics
anxiety, and intrinsic motivation to learn mathematics (Ramm
et al., 2006) from the program for international student
assessment (PISA). We specifically chose these because, as our

own secondary analysis of PISA data showed, they displayed
substantial predictive power for mathematics performance in
the German PISA 2003 sample. In addition, we included the
two PISA variables attitudes toward computers and computer-
related locus of control, because of the computer-based learning
setting of our experiment. Cognitive potential usually has high
predictive power on mathematics performance. Therefore, we
administered the subtest matrices analogies in the German
adaptation of the cognitive ability test (Heller and Perleth, 2000).
Additionally, visual-spatial ability was assessed because it is a
relevant part of intelligence and because we assumed an ATI-
effect between visual-spatial ability and learning with dynamic
visualization (cp. H3). We used three different scales: the first,
dice rotation, and second, compounding two-dimensional figures,
were selected from the German intelligence test I-S-T 2000R
(Amthauer et al., 2001); the third was the paper-folding test of the
Educational Testing Service (Ekstrom et al., 1976). In general,
a further important predictor of mathematics performance is
prior knowledge. Because the learning environment and the
posttest included graphs, we assessed students’ ability to deal
with graphs. Hence, we developed a graph comprehension test
that had sufficient internal consistency (α = 0.73). It consisted of
21 items that required students to analyze graphs qualitatively.
The original German graph comprehension test is presented in
Supplementary Material 2.

The computer-based posttest (α = 0.71) comprised 14 items
(see Figure 4). Here, students had to apply or “transfer” their
acquired knowledge to different figures (e.g., rectangular
triangles, rectangles, pentagons). Static representations
accompanied all the items because we were interested in
how dynamic visualizations can improve the learning process
and prompt elaborate mental representations so that the students
can subsequently apply their acquired knowledge on static
representations without the need for dynamic visualizations.
As Dörfler (1993) pointed out, “so-called visualizations
of mathematical concepts [. . .] remain an integrative and
constitutive part of the respective concept for the individual” (p.
169). The posttest was designed as a level test, and the students
were given sufficient time (approx. 15 minutes) to complete all
the items. The original German posttest items are reported in
Supplementary Material 3.

Posttest-Only Design
We used a posttest-only design for the following reasons.
First, because students were randomly assigned to one of
the three experimental conditions, and the group sizes were
sufficiently large. Hence, we can assume that confounding
variables (e.g., prior knowledge, intelligence) are balanced out
in the groups (Maxwell et al., 2018). Second, we feared an
interaction between pretesting and the intervention, that is,
that the students would behave differently with a pretest,
because of the specific nature of the learning content. Third,
we collected several covariates to control for the effect
of these variables on the outcome. Fourth and finally, in
a pre-posttest-design, there is a risk of the test showing
a floor effect in the pretest or a ceiling effect in the
posttest. Therefore, we decided the best way to perform the
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FIGURE 4 | Exemplary item of the posttest (translated into English).

experiment was to refrain from administering a content-
specific pretest.

Data Analysis
Analysis of the Experimental Effect
A covariance analysis was performed to analyze whether the
learning effects in the three experimental groups differed
significantly. The advantage of a covariance analysis over an
ANOVA is that it additionally takes into account the effect
of the control variables on the outcome (Field et al., 2012;
Tabachnick and Fidell, 2014). We used the regression approach
of a covariance analysis because it leads to identical results as
an ANCOVA but is more general and flexible (Field et al., 2012;
Tabachnick and Fidell, 2014).

The first hierarchical regression analysis was intended to
identify covariates that had a significant impact on the posttest.
Therefore, the control variables were gradually added to the
model as predictors in a first regression model. The order
of entry to the model was based on theoretical expectations
of which variables might explain a larger proportion of the
variance. Significant predictors for the posttest were ultimately
identified as covariates based on the results of the hierarchical
regression analysis.

The covariance analysis was performed in the second
regression analysis. Orthogonal contrasts were used to determine
the experimental effect. Since the design of the experiment was
slightly unbalanced due to randomization—that is, the three
experimental groups did not have the exact same number of
subjects—the contrast coefficients had to be adjusted to ensure
the orthogonality of the contrasts (c.f., Pedhazur, 1997). A total

score for visual-spatial ability was generated by calculating a
mean of the standardized values of the three different visual-
spatial ability variables.

Analysis of the Aptitude–Treatment Interaction
A moderated regression analysis was performed to analyze the
aptitude–treatment interaction between visual-spatial ability and
experimental effect.

Dealing With Missing Values
Items not seen by a student due to absence during the experiment
were coded as missing. Items on the ability scales seen but
not answered by students were rated as incorrect (graph
comprehension, posttest, matrices analogies, dice rotation,
compounding two-dimensional figures, and paper-folding test).
In the case of the attitude scales (mathematics self-efficacy,
mathematics anxiety, intrinsic motivation to learn mathematics,
attitudes toward computers, and computer-related locus of
control), seen but unanswered items were coded as missing.

Of the 157 students, five were not present for all three lessons
of the experiment. As a result, several of their scale values
were incomplete. Therefore, the data of these five subjects were
excluded from the analysis. Of the 152 students who participated
in all three lessons, six had at least one missing value on an
attitude scale because they had not answered one or more
items. Therefore, the missing values of these six students were
replaced by multiple imputations. Overall, four control variables
were affected by the imputations. The regression analyses were
therefore performed based on the observed and imputed data of
these 152 students.
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FIGURE 5 | Boxplots of the raw posttest scores of the three experimental
groups.

In the multiple imputations, five imputations were performed
resulting in five complete data matrices for the remaining 152
students. Hierarchical regression was performed on each of these
five data matrices, and the test statistics pooled. The pooling
of the F-values was determined using the D∗1-statistic (Reiter,
2007), while the pooling of the determinative coefficient R2 was
performed using Fisher’s (1915) z-transformation (c. f., Enders,
2010). The regression coefficients and their standard errors were
calculated in accordance with Rubin’s (1987) approach. For the
significance testing of the pooled regression coefficients by t-tests,
the adjusted degrees of freedom were determined using Barnard
and Rubin’s (1999) formula for small to medium sample sizes.

Software
Regression analyses were performed using the software package R
(R Core Team, 2017). Multiple imputations were calculated with
the package Mice (van Buuren and Groothuis-Oudshoorn, 2011).

RESULTS

Learning Effect of Experimental Groups (H1 and H2)
The descriptive analysis of the posttest results showed mean
differences between the three experimental groups (see Figure 5).
The group learning with static representations had a mean
posttest score of M = 5.98 (SD = 3.12), while the groups learning
with linear dynamic and interactive dynamic visualizations
achieved a mean posttest score of M = 7.04 (SD = 3.04) and
M = 7.67 (SD = 2.79), respectively.

To determine whether the means differed significantly, a
covariance analysis was performed by inserting covariates as
predictors in a multiple regression model. An analysis of
variance showed that the mean score of the control variables
did not differ significantly between the three experimental
groups (see Table 1). In addition, no signs of significant
variance heterogeneity were found, as revealed by Levene’s test
(see Table 1). Furthermore, different regression weights of the
control variables could not be identified. Thus, three important

preconditions for covariance analysis (covariate independent of
group effect, variance homogeneity, and homogeneous regression
weights) could be assumed.

In the first multiple hierarchical regression (see Table 2),
significant predictors for the posttest were identified for later
inclusion as covariates in the analysis. For this purpose, the graph
comprehension test was included in the regression model in step
1. The graph comprehension test had a significant influence,
β = 0.47, t(151) = 6.58, p < 0.001 and explained 22.3 percent of
the variance of the posttest score, F(1, 151) = 43.31, p < 0.001. An
additional significant 9.3 percentage point of explained variance
was provided by the four different facets of intelligence (matrices
analogies, dice rotation, compounding two-dimensional figures,
and paper-folding test), F(4, 147) = 5.01, p < 0.001. The
regression weights of the four individual variables did not,
however, differ significantly from 0. Including the scales for
attitude to mathematics in step 3 significantly increased the
proportion of variance explained by a further 7.2 percentage
points, F(3, 148.03) = 5.62, p = 0.001. However, only the
regression weight of the variable intrinsic motivation to learn
mathematics was significant, β = 0.30, t(141.98) = 3.56, p < 0.001.
In step 4, the scales anxiety in mathematics and self-efficacy in
mathematics were also included in the regression model. Here as
well, the regression coefficients did not differ significantly from
0; nor did the inclusion of the two variables significantly increase
the proportion of variance explained, F(2, 149.03) = 1.50, p = 0.23.

In a second step, control variables from the first regression
analysis were summarized for or eliminated from inclusion
as covariates in a regression model. The four variables
measuring cognitive ability (matrices analogies, dice rotation,
compounding two-dimensional figures, and paper-folding test)
showed multicollinearity from both a theoretical and an
empirical point of view. As multicollinearity should be avoided
in multiple regression (Tabachnick and Fidell, 2014), the four
scales were aggregated into a single value as the standardized
sum of the individual variable values. Since all four scales
were sub-facets of intelligence tests, this aggregated value was
called intelligence. Of the five attitude scales, only the intrinsic
motivation to learn mathematics variable was used as a covariate
in the second regression model since the four other variables did
not significantly contribute to the variance explained.

Thus, the three covariates graph comprehension, intelligence,
and intrinsic motivation to learn mathematics were included as
predictors in the second hierarchical multiple regression model
(see Table 3). Together, they accounted for 38.1 percent of the
variance of the posttest, F(3, 148.04) = 30.57, p < 0.001. For a
more comprehensible depiction of the experimental effects, the
adjusted mean scores for the three experimental groups after
eliminating the effect of the covariates were determined (see
Figure 6). After controlling for the covariates, the experimental
group that had learned with static representations had an
adjusted mean posttest score of Madj = 6.12, while the
groups learning with linear dynamic and interactive dynamic
visualizations had respective adjusted mean posttest scores of
Madj = 7.20 and Madj = 7.34.

In order to determine whether the adjusted mean posttest
scores differed significantly between the groups, orthogonal
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TABLE 1 | Descriptive statistics of the control variables.

Experimental group ANOVA Levene

S LD ID Fb p Fb p

Variable n1 = 54
M (SD)

n2 = 50
M (SD)

n3 = 48
M (SD)

Graph comprehension 10.1 (3.4) 9.0 (4.1) 10.4 (4.2) 1.65 0.20 1.40 0.25

Dice rotation 9.4 (3.4) 9.5 (3.3) 10.1 (4.0) 0.61 0.54 1.77 0.17

Compounding two-dimensional figures 9.9 (3.5) 10.2 (3.6) 10.7 (3.4) 0.64 0.53 0.09 0.91

Paper-folding test 11.3 (3.8) 10.9 (3.8) 11.9 (3.9) 1.33 0.27 0.09 0.92

Matrices analogies 16.9 (5.8) 15.9 (6.0) 16.8 (5.2) 0.42 0.66 0.43 0.65

Intrinsic motivation to learn mathematicsa 7.8 (2.7) 8.7 (2.7) 8.6 (2.6) 2.02 0.13 0.51 0.60

Attitudes toward computers 11.7 (2.7) 11.3 (2.7) 11.1 (3.4) 0.65 0.52 2.40 0.09

Computer-related locus of controla 21.4 (5.0) 21.5 (5.2) 20.6 (5.4) 0.44 0.64 0.05 0.95

Mathematics anxietya 9.8 (3.6) 9.0 (3.4) 8.6 (3.4) 1.67 0.19 0.45 0.64

Mathematics self-efficacya 23.6 (3.2) 24.0 (3.6) 24.2 (2.9) 0.46 0.63 1.55 0.21

S = static; LD = linear dynamic; ID = interactive dynamic. aThe values for these variables represent pooled values based on five imputations. bDegrees of freedom of the
F values of the variables vary depending on whether missing values have been imputed or whether the answers were complete.

contrasts were inserted into the second regression analysis. Since
the number of subjects in the experimental groups was not
completely balanced (static: n1 = 54, linear dynamic: n2 = 50,
interactive dynamic: n3 = 48), the contrasts were adjusted to the
size of the experimental groups. Therefore, for the comparison of
static representations and dynamic (linear dynamic or interactive
dynamic) visualizations, the contrast coefficient K1 = (-98, 54,54)
was used, whereas the linear dynamic and the interactive dynamic
group were compared using the contrast coefficient K2 = (0, -48,
50). Thus, the sum of the weighted contrast products was 0, and
the tested hypotheses were non-redundant and independent (c.f.,
Pedhazur, 1997).

TABLE 2 | Hierarchical regression with posttest as dependent variable.

Posttest score

Predictor 1R2 ß

Step 1 0.223***

Graph comprehension 0.47***

Step 2 0.093***

Dice rotation 0.12

Compounding two-dimensional figures 0.08

Paper-folding test 0.16

Matrices analogies 0.08

Step 3 0.072**

Intrinsic motivation to learn mathematics 0.30***

Mathematics anxiety 0.06

Mathematics self-efficacy 0.09

Step 4 0.013

Attitudes toward computers −0.166

Computer-related locus of control 0.12

Total R2 0.401***

N 152

From step 3 on, the coefficients of determination and the regression coefficients
are pooled values based on five imputations. **p < 0.01, ***p < 0.001.

TABLE 3 | Hierarchical regression supplemented by contrasts.

Posttest score

Predictor 1R2 ß

Step 1 0.381***

Graph comprehension 0.27***

Intelligence 0.37***

Intrinsic motivation to learn mathematics 0.28***

Step 2 0.032*

Contrast 1 (S vs. LD/ID) 0.18**

Contrast 2 (LD vs. ID) 0.02

Total R2 0.413***

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five
imputations. *p < 0.05, **p < 0.01, ***p < 0.001.

The integration of orthogonal contrasts contributed
significantly to a 3.2 percentage points increase in explained
variance of the posttest score, F(2, 149.04) = 4.00, p = 0.02.
This means that experimental group had a significant effect on
posttest scores. Specifically, there was a significant difference in
learning between static and dynamic visualizations, β = 0.18,
t(145.03) = 2.81, p = 0.006. However, no significant difference
could be identified between learning with linear dynamic and
learning with interactive dynamic visualizations, β = 0.02,
t(145.03) = 0.30, p = 0.77.

To verify the robustness of the results, a simple regression
analysis was performed in addition to the described covariance
analysis. No covariates were included as predictors in this
regression analysis. The integration of the contrasts resulted
in a significant proportion of the variance explained, at 5.3
percent, F(2, 150) = 4.19, p = 0.02. Consistent with the
covariance analysis, the experimental groups with linear dynamic
or interactive dynamic visualizations learned significantly more
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FIGURE 6 | Adjusted mean posttest scores of the three experimental groups.
**p < 0.01; ns = nonsignificant.

than the experimental group with static representations did,
β = 0.21, t(150) = 2.70, p = 0.008, whereas there was no significant
difference in learning between linear dynamic and interactive
dynamic visualizations, β = 0.08, t(150) = 1.04, p = 0.30.

Aptitude–Treatment Interactions (H3)
Hypothesis 3 postulated aptitude–treatment interactions between
visual-spatial ability and learning with dynamic visualizations.
Therefore, a moderated regression analysis (see Table 4) was
performed to determine whether visual-spatial ability had
a moderator effect. In the first step, the predictors graph
comprehension, visual-spatial ability, and intrinsic motivation
to learn mathematics, as well as the two orthogonal contrasts,
were included in the regression model. These five predictors
accounted for 40.4 percent of the variance of the posttest,

TABLE 4 | Hierarchical regression for analyzing aptitude–treatment interaction.

Posttest score

Predictor 1R2 ß

Step 1 0.404***

Graph comprehension 0.33***

Visual-spatial ability 0.31***

Intrinsic motivation to learn mathematics 0.24***

Contrast 1 (S vs. LD/ID) 0.18**

Contrast 2 (LD vs. ID) 0.02

Step 2 0.015

Contrast 1 × Visual-spatial ability 0.09

Contrast 2 × Visual-spatial ability −0.13

Total R2 0.419***

N 152

S = static; LD = linear dynamic; ID = interactive dynamic. The coefficients of
determination and the regression coefficients are pooled values based on five
imputations. **p < 0.01, ***p < 0.001.

F(5, 146.04) = 19.93, p < 0.001; visual-spatial ability showed a
significant main effect, β = 0.31, t(145.04) = 3.45, p < 0.001. In the
second step, interactions between the contrasts and visual-spatial
ability were included in the regression model. The interaction
terms did not significantly contribute to the explained variance,
F(2, 149.04) = 1.86, p = 0.16.

DISCUSSION

Learning With Dynamic Visualizations
In our experiment, dynamic visualizations were significantly
more beneficial for learning than were static representations.
Thus, in accordance with Hypothesis 1, an empirically verifiable
added value of dynamic visualizations was found. Potential
reasons for the effect can be inferred from the design of the
learning environment and the dynamic visualizations.

For example, the dynamic visualizations may have functioned
as scaffolding for the construction of a satisfactory mental model.
The content in the experiment required a relatively high cognitive
effort to mentally simulate the dynamic without external support.
In the static representation condition, movement of the point
along the perimeter of a triangle or quadrilateral had to
be simulated and the effects of this variation analyzed and
assessed in working memory. An incorrect mental simulation
of the dynamic process most likely led to inadequate inferences
about the graph’s shape. This result complies with the idea of
supplantation (Salomon, 1979/1994) that was assumed by Vogel
et al. (2007) und Hoffkamp (2011) as a theoretical underpinning
of dyna-linking. Dynamic visualizations are conducive to
learning if they supplant a mental process the student is unable
to perform. Therefore, dynamic visualizations can be used
to overcome a hurdle in learning mathematics. Conversely,
dynamic visualizations do not show a positive learning effect
if students do not need supplantation, that is, that they can
carry out the necessary mental processes successfully without a
dynamic visualization.

Furthermore, the content in the learning environment was
developed gradually in all three experimental groups. The
students in each group first had to anticipate the form of the
graph. The correct graph became visible in a subsequent task.
The group learning with static representations could hence also
see whether their mental simulation of the dynamic process
was correct. In contrast with the experimental groups learning
with dynamic visualizations, however, the static representations
group had very little opportunity to understand why their
considerations may have been wrong; those in the dynamic
visualizations groups could contemplate the dynamic on the
screen, subsequently correct any erroneous considerations and
ideally explore explanations for the shape of the graph. In the
dynamic visualization of the equilateral triangle, for example,
students could observe that in the middle section the length of
the chord decreased more and more slowly until a local minimum
was reached; and that the length of the chord then increased
speed until it reached a local maximum in the next corner. Being
able to observe this process in the dynamic visualization groups
made it easier for these learners to realize that the graph in the
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middle section had to have a symmetrical convex shape with a
local minimum in the middle. The group learning with static
representations, on the other hand, could only observe that the
graph had a convex symmetric form with a local minimum in
the following task. If these learners did not correctly anticipate
this form (e.g., due to faulty mental simulation of the dynamic
process), no help was available to generate a satisfactory mental
model and to understand why the graph shape presented was
correct. To draw conclusions solely from the illustrated form
of the graph about why their mental simulation of the dynamic
process was faulty would have required a considerable, in some
cases excessive, amount of cognitive effort from the learners.
Therefore, dynamic visualizations may have enabled the other
student groups to construct a more meaningful and coherent
model of the learning content.

Hypothesis 2 could not be corroborated as no difference
between learning with interactive and learning with linear
dynamic visualizations was found. A greater learning effect of
interactive dynamic visualizations was postulated primarily for
two reasons. First, it was assumed that interactive dynamic
visualizations would make it possible to control and investigate
the aspects that were relevant to the particular problem more
precisely (Ploetzner and Lowe, 2004) and therefore induce a
deeper processing of the learning content (Palmiter and Elkerton,
1993). When asked about the location of the local minima
of the length of the chord, for example, the chord could be
manipulated more precisely and repeatedly at the relevant point.
When using a linear dynamic visualization, the visualization had
to be observed carefully; the transitory moment at which the
chord became minimal could not be missed. Overall, it seems
that the transitivity of the linear dynamic visualization (Höffler
and Leutner, 2011) had no negative effect on learners. It seemed
that the learners did not experience additional difficulties in
processing the changes in the linear dynamic visualization, as
shown in some previous research (cp. Bétrancourt and Tversky,
2000). In our experiment, it was just as beneficial to observe the
dynamic process in a linear dynamic visualization as it was to
work with an interactive dynamic visualization.

Despite this, the experiment also showed that interactivity
had no negative effects. Under the assumption that interactivity
ties up cognitive resources unavailable for the learning process
(Ploetzner and Lowe, 2004), a negative effect of interactive
compared with linear dynamic visualizations would theoretically
have been understandable. One reason for the non-negative
effect of interactivity could be that the interaction possibilities in
the experiment were implemented very sparingly, and thus, the
interactivity caused no relevant higher cognitive load. Learners
could only move the point on the perimeter of the triangle.
Other interactive design options (e.g., moving the corner points
of the figure or shifting the starting point of the chord) were
intentionally disabled to keep the cognitive load and potential
negative effects caused by the interaction option low.

In sum, the theoretically assumed advantage of interactive
dynamic visualizations over linear dynamic visualizations could
not be proven empirically. The potential of interactivity might
only come to light in more complex and multifaceted tasks
like Hoffkamp’s (2011). In these tasks, the learners could

be more able to regulate the cognitive load imposed by a
dynamic visualization through interactive actions. Furthermore,
the possibility to investigate a task more focussed in an interactive
dynamic visualization may come more into play with a variety of
interaction options because they enable students to focus their
attention on a particular feature of the dynamic visualization.

Aptitude–Treatment Interaction
Regarding Hypothesis 3, no significant aptitude-treatment
interaction between visual-spatial ability and learning with
dynamic visualizations was found, despite a significant main
effect of visual-spatial ability in our experiment. Therefore, a
one-directional effect, as assumed by the ability-as-enhancer or
the ability-as-compensator thesis, could not be corroborated.
However, we should point out that the absence of a significant
effect did not prove that there is no aptitude-treatment
interaction. The two assumed effects might have balance out,
that is, that both an enhancing and a compensating effect of
visual-spatial ability on learning with dynamic visualizations
exist. Furthermore, the non-significance could be caused by a lack
of power of the experiment. It seems unlikely that our findings
were the result of the scales of visual-spatial ability used, as in
Sanchez and Wiley (2014) experiment, since we selected several
subscales that covered various sub-factors (c.f., Carroll, 1993) of
visual-spatial ability.

Limitations
The intervention in the experiment only took 25 min. Hence, it
was a relatively short and limited learning process. This raises
the question of how sustainable the learning process induced by
dynamic visualization really was. On the one hand, the differences
in learning gains may add up in longer learning units; that is,
that the difference between learning with static representations
and learning with dynamic visualization becomes even greater in
longer learning units. On the other hand, dynamic visualizations
might only enable faster access to the content. In a longer
intervention, after a slower "ignition phase," the group learning
with static representations could reach a level as high as that
reached by the groups learning with dynamic visualization. One
might consider examining which of these two effects occurs
during prolonged interventions in a further experiment.

Research Desiderata
The main intention of the experiment was to find any empirical
evidence for the effect of dynamic visualizations vs. static
representations in learning essential mathematical content.
Despite its success, just a modest effect of dynamic visualizations
compared with static representations was found. Many aspects
concerning dynamic visualizations in learning and teaching
mathematics remain unclear.

First, the conditions under which dynamic visualizations
in mathematics education are conducive to learning have not
yet been satisfactorily clarified. It has already been suggested
that limiting the interaction possibilities appears to prevent
excessive cognitive load. A further experiment might elucidate
the question of how an excessive level of interaction might hinder
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learning. Our experiment also did not show that interactive
dynamic visualizations are more beneficial than linear dynamic
visualizations. Experimental studies that take a closer look at
comparisons between interactive dynamic and linear dynamic
visualizations are therefore desirable.

Furthermore, the experiment was based on the assumption
that a didactically designed learning environment is needed
to generate positive learning effects of dynamic visualizations.
Therefore, the dynamic visualizations were integrated into a
learning environment in which the students had to explore
tasks with increasing difficulty and complexity. This approach
could also be validated or falsified by means of further
empirical investigation. Two experimental groups could work
with the same interactive dynamic visualization: one could
work freely and without concrete content-related problems with
an interactive dynamic visualization (possible task: "Explore
the computer-based learning environment and describe what
discoveries you make"); while the other could be given pre-
structured and targeted assignments. Such a design could be used
to determine to which extent simply exploring an interactive
dynamic visualization itself induces a learning process.

Finally, it would be beneficial to investigate the learning
effect of dynamic visualizations for further mathematical content.
These studies should be combined with further in-depth
theoretical considerations about the advantages that learning
with dynamic visualizations can offer regarding these contents.
For example, in calculus, many students struggle to comprehend
limiting processes (e.g., derivative, integral). Therefore, several
dynamic visualizations are available to support the learning and
teaching of calculus. Against the backdrop of our quantitative
results and findings based on qualitative research from Hoffkamp
(2011), it seems plausible to assume that the appropriate use of
dynamic visualizations could be beneficial in teaching calculus.
However, an empirical validation with quantitative experiments
of the effectiveness of teaching and learning with dynamic
visualizations in calculus is still pending. Furthermore, the
use of dynamic visualizations for learning dynamic aspects in
stochastics (e.g., the law of large numbers or central limit
theorem) or geometry (e.g., construction tasks) has not yet been
sufficiently empirically investigated.

CONCLUSION

Eventually, we can draw some conclusions for teaching
mathematics from the present study. On the one hand, we
can state that, under certain conditions, dynamic visualizations
can support learning better than static representations.
For example, embedding dynamic visualizations into an
elaborated learning environment seems beneficial. In
consequence, through the interactive relationship between
dynamic visualization as an artifact and the tasks, the
dynamic visualization can transform into an instrument
that enables learning (Rabardel, 2002). It is reasonable

to assume that other mathematical content (e.g., calculus,
probability theory) can bring out this potential of dynamic
visualizations as well.

On the other hand, the effect of dynamic visualizations was
rather modest, and interactivity had no additional effect at all.
Other cognitively activating features in a learning environment
like predict-observe-explain (Urban-Woldron, 2014) could
have a higher effect on learning mathematics than dynamic
visualizations. Therefore, the present study confirms that
expectations in using dynamic visualizations in teaching
mathematics should be realistic: Dynamic visualizations are no
magic bullets, but to a certain degree, they can facilitate learning
processes in mathematics.
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